Serratia marcescens suppresses host cellular immunity via the production of an adhesion-inhibitory factor against immunosurveillance cells.
نویسندگان
چکیده
Injection of a culture supernatant of Serratia marcescens into the bloodstream of the silkworm Bombyx mori increased the number of freely circulating immunosurveillance cells (hemocytes). Using a bioassay with live silkworms, serralysin metalloprotease was purified from the culture supernatant and identified as the factor responsible for this activity. Serralysin inhibited the in vitro attachment of both silkworm hemocytes and murine peritoneal macrophages. Incubation of silkworm hemocytes or murine macrophages with serralysin resulted in degradation of the cellular immune factor BmSPH-1 or calreticulin, respectively. Furthermore, serralysin suppressed in vitro phagocytosis of bacteria by hemocytes and in vivo bacterial clearance in silkworms. Disruption of the ser gene in S. marcescens attenuated its host killing ability in silkworms and mice. These findings suggest that serralysin metalloprotease secreted by S. marcescens suppresses cellular immunity by decreasing the adhesive properties of immunosurveillance cells, thereby contributing to bacterial pathogenesis.
منابع مشابه
The inhibitory effect of a Lactobacillus acidophilus derived biosurfactant on Serratia marcescens biofilm formation
Objective(s):Serratia marcescens is one of the nosocomial pathogen. The ability to form biofilm is an important feature in the pathogenesis of S. marcescens. The aim of this study was to determine the anti-adhesive properties of a biosurfactant isolated from Lactobacillus acidophilus ATCC 4356, on S. marcescens strains. Materials and Methods: Lactobacillus acidophilus ATCC 4356, was selected a...
متن کاملThe effect of humoral and cell-mediated immunity in resistance to systemic Serratia infection.
Protection against experimental Serratia marcescens infection in mice was enhanced by prior injection of formalin-killed or viable bacteria of the same strain. From the first to the fourth week after vaccination, specific immunity was involved in the host defence against systemic serratia infection. The transfer of antiserum specific for S. marcescens increased bacterial clearance from the live...
متن کاملSerratia marcescens induces apoptotic cell death in host immune cells via a lipopolysaccharide- and flagella-dependent mechanism.
Injection of Serratia marcescens into the blood (hemolymph) of the silkworm, Bombyx mori, induced the activation of c-Jun NH(2)-terminal kinase (JNK), followed by caspase activation and apoptosis of blood cells (hemocytes). This process impaired the innate immune response in which pathogen cell wall components, such as glucan, stimulate hemocytes, leading to the activation of insect cytokine pa...
متن کاملSerratia marcescens B4A Chitinase Product Optimization Using Taguchi Approach
Chitinase production by newly isolated Serratia marcescens B4A was optimized following Taguchi’sarray methods. Twenty-three bacterial isolates were screened from shrimp culture ponds in the South ofIran. A chitinase-producing bacterium was isolated based on it’s ability to utilize chitin as the sole carbonsource. The isolate designated as B4A, was identified as Serratia marces...
متن کاملSerratia marcescens ShlA pore-forming toxin is responsible for early induction of autophagy in host cells and is transcriptionally regulated by RcsB.
Serratia marcescens is a Gram-negative bacterium that thrives in a wide variety of ambient niches and interacts with an ample range of hosts. As an opportunistic human pathogen, it has increased its clinical incidence in recent years, being responsible for life-threatening nosocomial infections. S. marcescens produces numerous exoproteins with toxic effects, including the ShlA pore-forming toxi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 289 9 شماره
صفحات -
تاریخ انتشار 2014